Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Additive manufacturing (AM), particularly Laser Powder Bed Fusion (L-PBF), holds the potential for producing high-quality parts with intricate details. However, optimizing process parameters for arbitrary alloy chemistries to ensure printability remains challenging. This study evaluates machine learning (ML) models to predict a material’s amenability to L-PBF via the printability index, focusing on High Entropy Alloy (HEA) spaces. The printability index of a material is defined as the percentage of the defect-free L-PBF processing window. Our study revealed that CatBoost Regressors and Random Forest Regressors excel in predictive accuracy, consistently yielding predictions with competitive error metrics such as the mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and . In addition, competitive rank-order coefficients such as Spearman and Kendall-tau demonstrated that these models are not overfitting. Feature importance analysis using Shapley Additive Explanations (SHAP) highlighted key material properties influencing printability, such as kinetic viscosity, average Pauling electronegativity, and electric conductivity. While both models performed comparably in predictive accuracy, the Random Forest Regressor demonstrated superior computational efficiency, particularly with large datasets. Robustness tests confirmed its reliability across different test sizes. This research underscores the importance of considering factors like computational efficiency, interpretability, and robustness to noise when selecting ML models for L-PBF material printability prediction. Leveraging Integrated Computational Materials Engineering (ICME) methodologies and ML models can significantly optimize process parameters and material properties, paving the way for innovative solutions in L-PBF. This approach accelerates the assessment of new materials and optimizes existing ones for L-PBF processes, contributing significantly to the field of AM.more » « lessFree, publicly-accessible full text available December 26, 2026
-
We developed an ML framework to predict Vickers hardness in RHEAs. Feature selection reduced descriptors, enabling Kernel Ridge Regression to achieve the highest accuracy. SHAP identified valence electron concentration as a key predictor, highlighting ML’s potential in alloy design.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract A pulsar’s scintillation bandwidth is inversely proportional to the scattering delay, making accurate measurements of scintillation bandwidth critical to characterize unmitigated delays in efforts to measure low-frequency gravitational waves with pulsar timing arrays. In this pilot work, we searched for a subset of known pulsars within ∼97% of the data taken with the Puerto Rico Ultimate Pulsar Processing Instrument for the AO327 survey with the Arecibo telescope, attempting to measure the scintillation bandwidths in the data set by fitting to the 2D autocorrelation function of their dynamic spectra. We successfully measured 38 bandwidths from 23 pulsars (six without prior literature values), finding that: almost all of the measurements are larger than the predictions from NE2001 and YMW16 (two popular galactic models); NE2001 is more consistent with our measurements than YMW16; Gaussian fits to the bandwidth are more consistent with both electron density models than Lorentzian ones; and for the 17 pulsars with prior literature values, the measurements between various sources often vary by a few factors. The success of Gaussian fits may be due to the use of Gaussian fits to train models in previous work. The variance of literature values over time could relate to the scaling factor used to compare measurements, but also seems consistent with time-varying interstellar medium parameters. This work can be extended to the rest of AO327 to further investigate these trends, highlighting the continuing importance of large archival data sets for projects beyond their initial conception.more » « less
-
We describe archival observations and analysis of the HD 110067 planetary system using the Green Bank Telescope (GBT) as part of the Breakthrough Listen search for technosignatures. The star hosts six sub-Neptune planets in resonant orbits, and we tune the drift rate range of our search to match the properties of the system derived by Luque et al. Our observations cover frequencies from 1 to 11.2 GHz, using the GBT’s L, S, C, and X-band receivers, to an equivalent isotropic radiated power limit of ∼3 × 10^12 W. No technosignatures were found, but this unusual system remains an interesting target for future technosignature searches.more » « less
-
Abstract We present the first multiepoch broadband radio and millimeter monitoring of an off-nuclear tidal disruption event (TDE) using the Very Large Array, the Atacama Large Millimeter/submillimeter Array, the Allen Telescope Array, the Arcminute Microkelvin Imager Large Array, and the Submillimeter Array. The off-nuclear TDE AT 2024tvd exhibits double-peaked radio light curves and the fastest-evolving radio emission observed from a TDE to date. With respect to the optical discovery date, the first radio flare rises faster thanFν ∼ t9at Δt = 88–131 days and then decays as fast asFν ∼ t−6. The emergence of a second radio flare is observed at Δt ≈ 194 days with an initial fast rise ofFν ∼ t18and an optically thin decline ofFν ∼ t−12. We interpret these observations in the context of a self-absorbed and free–free absorbed synchrotron spectrum, while accounting for both synchrotron and inverse Compton cooling. We find that a single prompt outflow cannot easily explain these observations and that it is likely that either there is only one outflow that was launched at Δt ∼ 80 days or there are two distinct outflows, with the second launched at Δt ∼ 170–190 days. The nature of these outflows, whether sub-, mildly, or ultrarelativistic, is still unclear, and we explore these different scenarios. Finally, we find a temporal coincidence between the launch time of the first radio-emitting outflow and the onset of a power-law component in the X-ray spectrum, attributed to inverse Compton scattering of thermal photons.more » « lessFree, publicly-accessible full text available October 13, 2026
-
Abstract The SETI Ellipsoid is a strategy for technosignature candidate selection that assumes that extraterrestrial civilizations who have observed a galactic-scale event—such as supernova 1987A—may use it as a Schelling point to broadcast synchronized signals indicating their presence. Continuous wide-field surveys of the sky offer a powerful new opportunity to look for these signals, compensating for the uncertainty in their estimated time of arrival. We explore sources in the TESS continuous viewing zone, which corresponds to 5% of all TESS data, observed during the first 3 yr of the mission. Using improved 3D locations for stars from Gaia Early Data Release 3, we identified 32 SN 1987A SETI Ellipsoid targets in the TESS continuous viewing zone with uncertainties better than 0.5 lt-yr. We examined the TESS light curves of these stars during the Ellipsoid crossing event and found no anomalous signatures. We discuss ways to expand this methodology to other surveys, more targets, and different potential signal types.more » « less
-
Taylor, Scott; Zelditch, Miriam (Ed.)Abstract Host shifts to new plant species can drive speciation for plant-feeding insects, but how commonly do host shifts also drive diversification for the parasites of those same insects? Oak gall wasps induce galls on oak trees and shifts to novel tree hosts and new tree organs have been implicated as drivers of oak gall wasp speciation. Gall wasps are themselves attacked by many insect parasites, which must find their hosts on the correct tree species and organ, but also must navigate the morphologically variable galls with which they interact. Thus, we ask whether host shifts to new trees, organs, or gall morphologies correlate with gall parasite diversification. We delimit species and infer phylogenies for two genera of gall kleptoparasites, Synergus and Ceroptres, reared from a variety of North American oak galls. We find that most species were reared from galls induced by just one gall wasp species, and no parasite species was reared from galls of more than four species. Most kleptoparasite divergence events correlate with shifts to non-ancestral galls. These shifts often involved changes in tree habitat, gall location, and gall morphology. Host shifts are thus implicated in driving diversification for both oak gall wasps and their kleptoparasitic associates.more » « less
An official website of the United States government
